Нещата, които са по-малки дори и от Жоро Софкин

Колко малки са кварките, защо пък се казват така, колко лев струва производството на един грам антиматерия и въобще, защо хората си пълнят мозъците с расова сегрегация и чалга, вместо да си седнат на гъзовете и да помислят?

През 1911 г. британски учен Ч. Уилсън изучавал образуването на облаците, като непрекъснато се бъхтел до върха на Бен Нейвис, шотландска планина, известна с влагата си, когато му хрумнало, че трябва да има по-лесен начин за изучаване на облаците. Като се върнал в лабораторията Кавендиш в Кеймбридж, изградил зала за изкуствени облаци – просто изобретение, с което можел да охлажда и овлажнява въздуха, създавайки удачен модел на облак в лабораторни условия.Приспособлението работело много добре, но имало и допълнително, неочаквано предимство. Когато той ускорявал алфа-частца през залата, за да отсява измислените си облаци, тя оставяла видима следа – като тази на минаващ пътнически самолет. Току-що бил изобретил детектора на частици. Той давал убедителни доказателства, че наистина съществували субатомни частици.

Накрая други двама учени от „Кавендиш“ изобретили по-мощен уред за протонови лъчи, а Ърнест Лоурънс в Бъркли, Калифорния, създал известния си и впечатляващ циклотрон или разбивач на атоми, както такива уреди били интригуващо наричани дълго време. Всички тези изобретения работели – и още работят – на повече или по-малко един и същи принцип. Идеята била да се ускори протон или друга заредена частица до изключително висока скорост по някаква траектория (понякога кръгообразна, понякога линейна), след това да се сблъска с друга частица и да се види какво ще излети. Ето защо тези уреди били наричани разбивачи на атоми. Науката не била в най-изтънчения си вид, но в общи линии имало ефект.

С изграждането на по-големи и по-амбициозни машини физиците започнали да намират или да допускат съществуването на частици или семейства от частици, почти до безчет: мюони, пиони, хиперони, мезони, К-мезони, Хигс-бозони, междинни вектор бозони, бариони, тахиони. Дори физиците започнали да се чувстват малко неудобно. „Млади човече“ – отвърнал Енрико Ферми на един студент, когато бил запитан за името на една определена частица – „ако можех да запомня имената на тези частици, щях да съм ботаник.“

Днес ускорителите на частици носят имена, които Флаш Гордън би използвал при битка: суперпротонен синхротрон, голям електрон-позитронен ускорител, голям адронен ускорител, тежкойонен ускорител. Като използват огромни количества енергия (с някои се работи само нощем, така че хората в съседните градове да не забележат как осветлението им намалява, когато такава апаратура се задейства), те могат да сблъскват частиците до такава степен, че един електрон може да направи 47 000 обиколки на тунел, дълъг 6 километра, за секунда. Има опасения, че в ентусиазма си учените могат по невнимание да създадат черна дупка или дори нещо, наречено „странни кварки“, което теоретически би могло да влезе във взаимодействие с други субатомни частици и да се разпространи безконтролно. Ако четете това, значи това още не е станало.

Нужна е известна концентрация, за да се открият частици. Те не са само малки и бързи, но често са и измамно мимолетни. Частиците могат да се появят и да изчезнат само за 0,000000000000000000000001 секунда (10 на степен –24). Дори най-мудните от нестабилните частици просъществуват за не повече от 0,0000001 секунда (10 на степен –7).

Някои частици просто са абсурдно неуловими. Всяка секунда Земята се посещава от 10 000 трилиона трилиона миниатюрни, всякакви, но безтегловни неутрино (повечето изстреляни от ядрената горещина на Слънцето) и фактически почти всички те преминават направо през планетата и всичко, което е върху й, включително през вас и мен, като че ли там няма нищо. За да уловят само няколко от тях, учените се нуждаят от резервоари, съдържащи 50 милиона литра тежка вода (т.е. вода с относително изобилие на деутерий в нея) в подземни кухини (обикновено стари мини), където не може да се получат смущения от други видове радиация. Доста често някое минаващо неутрино ще се сблъска с едно от атомните ядра във водата и ще произведе малък взрив на енергия. Учените броят взривяванията и по такъв начин ни приближават по-близо до разгадаването на фундаменталните свойства на вселената. През 1998 г. японски наблюдатели съобщили, че неутриното има маса, но не особено голяма – около една десетмилионна от тази на електрона.

Това, което днес е нужно, за да се открият нови частици, е пари и то много.

Има любопитна обратнопропорционална връзка в съвременната физика между малкия размер на това, което се търси, и мащаба на съоръженията, нужни за търсенето. CERN – Европейската лаборатория за физика на частиците, е като малък град на границата между Франция и Швейцария. В нея работят над три хиляди души и тя заема площ, която се измерва в квадратни километри. CERN притежава низ от магнити, които тежат повече от Айфеловата кула, както и подземен тунел, дълъг 25 километра.

Да се разделят атомите е лесно, както отбелязва Джеймс Трефил: “Всеки път го правим, като включим флуоресцентна лампа. За да се раздели обаче атомно ядро са нужни много пари и изобилие от електричество. За да се стигне до нивото на кварките – частиците, които съставляват частиците – е нужно още повече: трилиони волтове електричество и бюджет на малка централноамериканска страна“.

Най-новият ускорител на CERN наречен Large Hadron Collider (Голям адронен ускорител), може да достига 14 трилиона електронволта енергия, а конструирането му струва над 1,5 милиарда долара.

Тези числа са нищо в сравнение с това, което щяло да бъде постигнато и изразходвано за огромния и за жалост несбъднат суперускорител, наречен Superconducting Supercollider, който започнали да конструират близо до Уаксхачи, Тексас, през 1980-те, преди самият проект да се сблъска с Американския конгрес. Целта на ускорителя била да позволи на учените да вникнат в „пределната същност на материята“, както винаги се цитира, като пресъздадат колкото е възможно по-близо условията във вселената през първите й десет хиляди милиардни от секундата. Планът бил да се изстрелят частици през тунел, дълъг около 10 километра, постигайки наистина изумителните 99 трилиона електронволта енергия. Бил грандиозен план, но изграждането му щяло да струва 8 милиарда долара (число, което накрая достигнало 10 милиарда долара) и стотици милиона долара годишно за разходи.

Вероятно най-добрият пример в историята за изсипване на пари в дупка в земята е, когато Конгресът изразходвал 2 милиарда за проекта и след това го спрял през 1993 г., след като били изкопани 20 километра от тунела. Така че днес Тексас може да се похвали с най-скъпата дупка в света. Мястото сега е, в основни линии едно огромно изчистено поле с малки сгушени и изпълнени с разочарование градове, разпръснати по периферията му.

След провала на суперускорителя физиците на елементарните частици поставят целите си малко по-ниско, но дори сравнително скромни проекти могат да са зашеметяващо скъпи, когато се сравняват с, да кажем, почти всичко друго. Според плановете за една бъдеща обсерватория за неутрино в старата мина Хоумстейк в Лийд, Южна Дакота, тя ще струва 500 милиона долара, за да се построи – и това в мина, която вече е изкопана – преди дори да се сметнат годишните текущи разходи. Ще има и допълнителни 281 милиона долара за „общи разходи за възстановяване“. Междувременно само обновяване на ускорител на частици във Фермилаб в Илиной струваше 260 милиона долара.

Накратко, физиката на елементарните частици е изключително скъпо, но продуктивно начинание. Понастоящем броят на частиците надхвърля 150 и се подозира, че има още 100, но, за жалост, по думите на Ричард Фейнман – „много е трудно да се разбере взаимовръзката между всичките тези частици, както и за какво са нужни на природата и какви са връзките им една с друга.“ Неминуемо всеки път, когато успяваме да отключим една кутия, откриваме, че вътре има друга заключена кутия. Някои смятат, че съществуват частици, наречени тахиони, които могат да се движат по-бързо от скоростта на светлината. Други жадуват да открият гравитоните – базата на гравитацията. Карл Сейгън в Космос разисква възможността, че ако се спуснем навътре в електрона, би могло да открием, че той съдържа своя собствена вселена, напомняйки ни за цялата тази научна фантастика от петдесетте години – „Вътре, организирани в локален еквивалент на галактиките и в по-малки структури, има огромен брой други, много по-малки елементарни частици, които сами по себе си са вселени в едно следващо ниво, и така до безкрайност – една безбрежна регресия надолу, вселени във вселени, до безкрай. А също и нагоре.“ За повечето от нас това е свят, който надхвърля възможностите ни за разбиране на нещата. Днес за да се прочете дори елементарен наръчник по физика на елементарните частици, трябва да се справим с лексикални премеждия от рода на „Зареденият пион и антипион се разпадат съответно в миони плюс антинеутрино, и антимион плюс неутрино със средно време на полуразпад от 2,603×10 на степен –8 секунди неутралният пион се разпада на два фотона със среден полуразпад от около 0,8×10 на степен -16 секунди, а мионът и антимионът се разпадат съответно в…“ И така нататък – и това е от книга за обикновения читател, написана от най-разбираемите от интерпретаторите – Стивън Уайнбърг, свиньо прочети я!

През 1960-те в опит да се опростят малко нещата физикът от Калифорнийския технологичен институт Мъри Гел-Ман измислил нов клас частици, по думите на Стивън Уайнбърг „за да постигне известна икономичност в множеството от адрони“ – събирателен термин, използван от физиците за протоните, неутроните и други частици, управлявани от силното ядрено взаимодействие. Теорията на Гел-Ман гласяла, че всички адрони са съставени от още по-малки и по-фундаментални частици. Колегата му Ричард Фейнман искал да нарече тези основни частици партони, като Доли Партон, но решението му било отхвърлено. Вместо това те станали известни като кварки.Гел-Ман взел името от ред във „Бдение за Финеган“ на Дж. Джойс: „Три кварки за Мъстър Марк!“ (Вещите физици римуват думата quarks със storks – щъркели, а не larks – чучулиги, въпреки че произношението на последната е това, което Джойс е имал предвид.) Фундаменталната простота на кварките не продължила дълго. След като те станали по-разбираеми, трябвало да се въведат подгрупи. Въпреки че кварките са твърде малки, за да имат цвят или вкус, или каквито и да са други физични характеристики, които да различаваме, те са класифицирани в шест категории – горе, долу, странност, чар, връх, дъно – които физиците чудато наричат техен „вкус“, а те се подразделят по-нататък на цветове – червен, зелен и син. (Човек не може да не заподозре, че не случайно тези термини за първи път се употребяват в Калифорния в епохата на наркоманията).

Накрая от всичко това се появил така наречения Стандартен модел, който в основни линии е комплект от частици за субатомния свят. Стандартният модел се състои от шест кварки, шест лептона, пет известни бозона и предполагаемия шести – бозонът на Хигс (наречен на шотландския учен Питър Хигс), плюс три от четирите физични сили: силните и слабите ядрени взаимодействия и електромагнетизмът.

В общи линии постановката е, че сред основните градивни тухлички на материята са кварките; те са свързани чрез частици, наречени глюони; заедно кварките и глюоните формират протоните и неутроните – материята на атомното ядро. Лептоните са източник на електрони и неутрино. Кварките и лептоните заедно се наричат фермиони. Бозоните (наречени на индийския физик С. Н. Бозе) са частици, които пораждат и са носители на силите, и включват фотони и глюони.

Както се вижда, малко е объркващо, но това е най-простият модел, който може да даде обяснение какво става в света на частиците. Повечето физици по елементарните частици осъзнават, както Леон Ледерман отбелязва през 1985 г. в документален филм по телевизия PBS, че на Стандартния модел му липсва елегантност и простота. „Твърде сложен е. Има твърде много произволни параметри“ – казва Ледерман. „Някак си не виждаме създателят да си играе с двайсет копчета, за да заложи двайсет параметъра, с цел да създаде вселената такава, каквато я знаем.“ Физиката не е нищо друго освен търсенето на върховната простота, но засега всичко, което имаме, е една елегантна бъркотия – или, както Ледерман го формулира:

Налице е силното чувство, че картината не е красива – ама никак, свиньо!

Leave a Reply

Please Login to comment
  Subscribe  
Notify of